On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part II. State estimation via impedance-based temperature sensing
نویسندگان
چکیده
Impedance-based temperature detection (ITD) is a promising approach for rapid estimation of internal cell temperature based on the correlation between temperature and electrochemical impedance. Previously, ITD was used as part of an Extended Kalman Filter (EKF) state-estimator in conjunction with a thermal model to enable estimation of the 1-D temperature distribution of a cylindrical lithium-ion battery. Here, we extend this method to enable estimation of the 2-D temperature field of a battery with temperature gradients in both the radial and axial directions. An EKF using a parameterised 2-D spectral-Galerkin model with ITD measurement input (the imaginary part of the impedance at 215 Hz) is shown to accurately predict the core temperature and multiple surface temperatures of a 32113 LiFePO4 cell, using current excitation profiles based on an Artemis HEV drive cycle. The method is validated experimentally on a cell fitted with a heat sink and asymmetrically cooled via forced air convection. A novel approach to impedance-temperature calibration is also presented, which uses data from a single drive cycle, rather than measurements at multiple uniform cell temperatures as in previous studies. This greatly reduces the time required for calibration, since it overcomes the need for repeated cell thermal equalization.
منابع مشابه
On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part I. Low-order thermal modelling
Estimating the temperature distribution within Li-ion batteries during operation is critical for safety and control purposes. Although existing control-oriented thermal models such as thermal equivalent circuits (TEC) are computationally efficient, they only predict average temperatures, and are unable to predict the spatially resolved temperature distribution throughout the cell. We present a ...
متن کاملImproved nanofluid cooling of cylindrical lithium ion battery pack in charge/discharge operation using wavy/stair channels and copper sheath
Abstract: In order to improve the thermal management system for cooling an electric vehicle battery pack, the thermal performance of the battery pack in two states of charge and discharge in different working conditions by using a copper sheath around the batteries and a copper sheath, as well as a stair channel on top of the battery pack and using of nanofluid as cooling fluid, has been studie...
متن کاملInternal Resistance based State of Charge Estimation for Lead acid and Lithium ion Batteries - A Simulink Approach
Estimating the state of charge is important for any battery operated device. In case of automobile batteries, which are designed to deliver large power, many methods such as open circuit voltage based, ampere hour counting based, impedance based are used for calculating the state of charge. Internal resistance of a battery at a particular temperature directly gives the information about the sta...
متن کاملOn-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries
A state-of-health (SOH) estimation method for electric vehicles (EVs) is presented with three main advantages: (1) it provides joint estimation of cell’s aging states in terms of power and energy (i.e., SOHP and SOHE)—because the determination of SOHP and SOHE can be reduced to the estimation of the ohmic resistance increase and capacity loss, respectively, the ohmic resistance at nominal tempe...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.01786 شماره
صفحات -
تاریخ انتشار 2016